Hamiltonian regularisation of shallow water equations with uneven bottom

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-dispersive conservative regularisation of nonlinear shallow water and isothermal Euler equations

A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and possess a variational structure. Thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is tha...

متن کامل

Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry

In this paper we present the exact solution of the Riemann Problem for the non-linear shallow water equations with a step-like bottom. The solution has been obtained by solving an enlarged system obtained by adding an additional equation for the bottom geometry and then using the principles of conservation of mass and momentum across the step. The resulting solution is unique and satis es the p...

متن کامل

Numerical solution of the two-layer shallow water equations with bottom topography

We present a simple, robust numerical method for solving the two-layer shallow water equations with arbitrarybottom topography.Using the techniqueof operator splitting,we write the equationsas a pair of hyperbolic systems with readily computed characteristics, and apply third-order-upwind differences to the resulting wave equations. To prevent the thickness of either layer from vanishing, we mo...

متن کامل

Port-Hamiltonian formulation of shallow water equations with coriolis force and topography∗

Port based network modeling of complex lumped parameter physical systems naturally leads to a generalized Hamiltonian formulation of its dynamics. The resulting class of open dynamical systems are called “Port-Hamiltonian systems” [12] which are defined using a Dirac structure, the Hamiltonian and dissipative elements. This formulation has been successfully extended to classes of distributed pa...

متن کامل

Shallow Water Equations

where an denotes a vertical acceleration of the fluid, e.g., due to gravity. This formulation can be derived from the NS equations by, most importantly, assuming a hydrostatic pressure along the direction of gravity. Interested readers can find a detailed derivation of these euqations in Section A. In the following sections we will first explain how to solve these equations with a basic solver,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2019

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8121/ab3eb2